
LocatingRelevantSourceFiles
forBugReportsusingTextual
Analysis

CSSE 2017

Reza Gharibi, Amir Hossein Rasekh, Mohammad Hadi Sadreddini

October, 2017

Software and Bugs

1/14

We have things like:
Software Testing
Software Inspection

...

but... Software still have bugs

Adding Bug Trackers

2/14

BugReports Overflow

3/14

3389 bug reports for in

2013[Ye et al., 2014]

300 bug reports for

everyday[Shokripour et al., 2013]

■ Text based bug localization to reduce the search space

Motivating Example

4/14

Bug ID: 80720
Summary: Pinned console does not remain on top
Description:
Open two console views, … Pin one console. Launch
another program that produces output. Both consoles display
the last launch. The pinned console should remain pinned.

public class ConsoleView extends PageBookView
implements IConsoleView, IConsoleListener {...

public void display(IConsole console) {
if (fPinned && fActiveConsole != null) { return;}

} ...
public void pin(IConsole console) {

if (console == null) { setPinned(false);
} else {

if (isPinned()) { setPinned(false); }
display(console);
setPinned(true);

}
}

}

TheOverall Structure

5/14

Source Code Files New Bug Report Previously Fixed
Bug Reports

Parsing & Preprocessing

Token Matching
Component

Similarity Based
Component

Classification
Component

Combining Scores

Final Ranking Score

Parsing

6/14

Parsing and extracting specific parts.

<bug id=”80720”
opendate=”2005-03-10 12:28:00”
fixdate=”2005-03-10 14:19:00”>

<buginformation>
<summary>Pinned console does not
remain on top</summary>

<description>Open two console
views, Pin one console. Launch
another program that produces
output. Both consoles display
the last launch.</description>
</buginformation>

</bug>

public class ConsoleView {
public void display(console) {

if (fPinned &&
fActiveConsole != null)
{ return; }

}
public void pin(console) {

if (console == null)
{ setPinned(false);
} else {

if (isPinned())
{ setPinned(false); }
display(console);
setPinned(true);

}
}

}

Preprocessing

7/14

Extracting NOUNS from bug reports and source code
comments.

Open two console
NNS︷ ︸︸ ︷
views, pin one

NN︷ ︸︸ ︷
console. The

NN︷ ︸︸ ︷
pinned console should remain pinned.

PinnedConsole Split−−−−−→
CamelCase

Pinned Console Punctutation−−−−−−→
Numbers

...
Stop words−−−−−−−−−−−−−−−→

Programming Lang. keywords
... Stem−−→ pin consol

TokenMatching Component

8/14

File Name Class
Names

Method
Names

Comments

Boosts the bug localization by finding the exact matching
tokens.

<summary>Pinned console does not remain on top</summary>

Source code file: ConsoleView.java

More score for specific matches.

Similarity Based Component

9/14

Constructing tf-idf vectors:

V⃗SourceFiles :
[Class Names + Method Names + Comments Nouns]
V⃗BugReports : [Summary Nouns + Description Nouns]

Calculating similarity for each report-src pair:

cos(s, b) =
V⃗s · V⃗b

|V⃗s| × |V⃗b|

Classification Component

10/14

Using previously fixed bug reports.
A multi-label classification algorithm:

Features: tf-idf weights of summary & nouns set
Labels: each bug report’s fixed source files

Probabilities from an OvR with a LinearSVM base
classifier.

Combining Scores

11/14

Final ranking of source files:

FinalScore = α× TokenMatchingScore
+β × SimilarityBasedComponent

+γ × ClassificationComponent

α, β, γ ∈ [0, 1]

Experimental Evaluation

12/14

Benchmark Dataset:

Project BR Period #Fixed Bugs #Source Files

SWT Oct 2004 - Apr 2010 98 484
ZXing Mar 2010 - Sep 2010 20 391

Previous Works:
BugLocator: Vector Space Model + previous bug reports.
BLUiR: Structured BM25 + previous bug reports.

Results

13/14

Project Approach Top@1 Top@5 Top@10 MRR MAP

BugLocator 39 66 80 0.53 0.45
SWT BLUiR 55 75 86 0.66 0.58

Our Approach 62 78 84 0.71 0.61

BugLocator 8 12 14 0.50 0.44
ZXing BLUiR 8 13 14 0.49 0.39

Our Approach 10 14 16 0.59 0.50

Conclusion

14/14

Searching through a huge amount of source
files is time consuming and inefficient.
A bug localization technique can automate this
process.
Our approach presented an automatic bug
localization technique.
The approach improved the ranking of faulty
source files.

Thanks for your attention

Any Questions?

References
 X. Ye, R. Bunescu, and C. Liu, “Learning to rank relevant files for bug

reports using domain knowledge,” in Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations of Software
Engineering, 2014, pp. 689–699.

 R. Shokripour, J. Anvik, Z. M. Kasirun, and S. Zamani, “Why so
complicated? simple term filtering and weighting for location-based
bug report assignment recommendation,” in Proceedings of the 10th
Working Conference on Mining Software Repositories, 2013, pp.
2–11.

 J. Zhou, H. Zhang, and D. Lo, “Where should the bugs be fixed? more
accurate information retrieval-based bug localization based on bug
reports,” in 2012 34th International Conference on Software
Engineering (ICSE), 2012, pp. 14–24.

 R. K. Saha, M. Lease, S. Khurshid, and D. E. Perry, “Improving bug
localization using structured information retrieval,” in Automated
Software Engineering (ASE), 2013 IEEE/ACM 28th International
Conference on, 2013, pp. 345–355.

	Appendix

