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Software and Bugs
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We have things like:
Software Testing
Software Inspection

...

but... Software still have bugs



Adding Bug Trackers

2/14



BugReports Overflow
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3389 bug reports for in

2013[Ye et al., 2014]

300 bug reports for

everyday[Shokripour et al., 2013]

■ Text based bug localization to reduce the search space



Motivating Example
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Bug ID: 80720
Summary: Pinned console does not remain on top
Description:
Open two console views, … Pin one console. Launch
another program that produces output. Both consoles display
the last launch. The pinned console should remain pinned.

public class ConsoleView extends PageBookView
implements IConsoleView, IConsoleListener {...

public void display(IConsole console) {
if (fPinned && fActiveConsole != null) { return;}

} ...
public void pin(IConsole console) {

if (console == null) { setPinned(false);
} else {

if (isPinned()) { setPinned(false); }
display(console);
setPinned(true);

}
}

}



TheOverall Structure
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Source Code Files New Bug Report Previously Fixed
Bug Reports

Parsing & Preprocessing

Token Matching
Component

Similarity Based
Component

Classification
Component

Combining Scores

Final Ranking Score



Parsing
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Parsing and extracting specific parts.

<bug id=”80720”
opendate=”2005-03-10 12:28:00”
fixdate=”2005-03-10 14:19:00”>

<buginformation>
<summary>Pinned console does not
remain on top</summary>

<description>Open two console
views, Pin one console. Launch
another program that produces
output. Both consoles display
the last launch.</description>
</buginformation>

</bug>

public class ConsoleView {
public void display(console) {

if (fPinned &&
fActiveConsole != null)
{ return; }

}
public void pin(console) {

if (console == null)
{ setPinned(false);
} else {

if (isPinned())
{ setPinned(false); }
display(console);
setPinned(true);

}
}

}



Preprocessing
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Extracting NOUNS from bug reports and source code
comments.

Open two console
NNS︷ ︸︸ ︷
views, pin one

NN︷ ︸︸ ︷
console. The

NN︷ ︸︸ ︷
pinned console should remain pinned.

PinnedConsole Split−−−−−→
CamelCase

Pinned Console Punctutation−−−−−−→
Numbers

...
Stop words−−−−−−−−−−−−−−−→

Programming Lang. keywords
... Stem−−→ pin consol



TokenMatching Component
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File Name Class
Names

Method
Names

Comments

Boosts the bug localization by finding the exact matching
tokens.

<summary>Pinned console does not remain on top</summary>

Source code file: ConsoleView.java

More score for specific matches.



Similarity Based Component
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Constructing tf-idf vectors:

V⃗SourceFiles :
[Class Names + Method Names + Comments Nouns]
V⃗BugReports : [Summary Nouns + Description Nouns]

Calculating similarity for each report-src pair:

cos(s, b) =
V⃗s · V⃗b

|V⃗s| × |V⃗b|



Classification Component
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Using previously fixed bug reports.
A multi-label classification algorithm:

Features: tf-idf weights of summary & nouns set
Labels: each bug report’s fixed source files

Probabilities from an OvR with a LinearSVM base
classifier.



Combining Scores
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Final ranking of source files:

FinalScore = α× TokenMatchingScore
+β × SimilarityBasedComponent

+γ × ClassificationComponent

α, β, γ ∈ [0, 1]



Experimental Evaluation
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Benchmark Dataset:

Project BR Period #Fixed Bugs #Source Files

SWT Oct 2004 - Apr 2010 98 484
ZXing Mar 2010 - Sep 2010 20 391

Previous Works:
BugLocator: Vector Space Model + previous bug reports.
BLUiR: Structured BM25 + previous bug reports.



Results
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Project Approach Top@1 Top@5 Top@10 MRR MAP

BugLocator 39 66 80 0.53 0.45
SWT BLUiR 55 75 86 0.66 0.58

Our Approach 62 78 84 0.71 0.61

BugLocator 8 12 14 0.50 0.44
ZXing BLUiR 8 13 14 0.49 0.39

Our Approach 10 14 16 0.59 0.50



Conclusion
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Searching through a huge amount of source
files is time consuming and inefficient.
A bug localization technique can automate this
process.
Our approach presented an automatic bug
localization technique.
The approach improved the ranking of faulty
source files.



Thanks for your attention

Any Questions?
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